Papers
Topics
Authors
Recent
Search
2000 character limit reached

Performance of Three Slim Variants of The Long Short-Term Memory (LSTM) Layer

Published 2 Jan 2019 in cs.NE, cs.AI, and cs.LG | (1901.00525v1)

Abstract: The Long Short-Term Memory (LSTM) layer is an important advancement in the field of neural networks and machine learning, allowing for effective training and impressive inference performance. LSTM-based neural networks have been successfully employed in various applications such as speech processing and language translation. The LSTM layer can be simplified by removing certain components, potentially speeding up training and runtime with limited change in performance. In particular, the recently introduced variants, called SLIM LSTMs, have shown success in initial experiments to support this view. Here, we perform computational analysis of the validation accuracy of a convolutional plus recurrent neural network architecture using comparatively the standard LSTM and three SLIM LSTM layers. We have found that some realizations of the SLIM LSTM layers can potentially perform as well as the standard LSTM layer for our considered architecture.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.