Papers
Topics
Authors
Recent
2000 character limit reached

Action2Vec: A Crossmodal Embedding Approach to Action Learning

Published 2 Jan 2019 in cs.CV | (1901.00484v1)

Abstract: We describe a novel cross-modal embedding space for actions, named Action2Vec, which combines linguistic cues from class labels with spatio-temporal features derived from video clips. Our approach uses a hierarchical recurrent network to capture the temporal structure of video features. We train our embedding using a joint loss that combines classification accuracy with similarity to Word2Vec semantics. We evaluate Action2Vec by performing zero shot action recognition and obtain state of the art results on three standard datasets. In addition, we present two novel analogy tests which quantify the extent to which our joint embedding captures distributional semantics. This is the first joint embedding space to combine verbs and action videos, and the first to be thoroughly evaluated with respect to its distributional semantics.

Citations (58)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.