Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

On the cohomology of surfaces with $p_g = q = 2$ and maximal Albanese dimension (1901.00193v1)

Published 1 Jan 2019 in math.AG

Abstract: In this paper we study the cohomology of smooth projective complex surfaces $S$ of general type with invariants $p_g = q = 2$ and surjective Albanese morphism. We show that on a Hodge-theoretic level, the cohomology is described by the cohomology of the Albanese variety and a K3 surface $X$ that we call the K3 partner of $S$. Furthermore, we show that in suitable cases we can geometrically construct the K3 partner $X$ and an algebraic correspondence in $S \times X$ that relates the cohomology of $S$ and $X$. Finally, we prove the Tate and Mumford-Tate conjectures for those surfaces $S$ that lie in connected components of the Gieseker moduli space that contain a product-quotient surface.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.