Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Analytical Results of k-core Pruning Process on Multi-layer Networks (1812.11111v1)

Published 28 Dec 2018 in physics.soc-ph

Abstract: Multi-layer networks or multiplex networks are generally considered as the networks that have the same set of vertices but different types of edges. Multi-layer networks are especially useful when describing the systems with several kinds of interactions. In this paper we study the analytical solution of $\textbf{k}$-core pruning process on multi-layer networks. $k$-core decomposition is a widely used method to find the dense core of the network. Previously the Nonbacktracking Expand Branch (NBEB) is found to be able to easily derive the exact analytical results in the $k$-core pruning process. Here we further extend this method to solve the $\textbf{k}$-core pruning process on multi-layer networks by designing a variation of the method called Multicolor Nonbacktracking Expand Branch (MNEB). Our results show that, given any initial multi-layer network, Multicolor Nonbacktracking Expand Branch can offer the exact solution for each intermediate state of the pruning process, these results do not only apply to uncorrelated network, but also apply to networks with either interlayer correlations or in-layer correlations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube