A topological model for inflation (1812.08158v1)
Abstract: In this paper we will discuss a new model for inflation based on topological ideas. For that purpose we will consider the change of the topology of the spatial component seen as compact 3-manifold. We analyzed the topology change by using Morse theory and handle body decomposition of manifolds. For the general case of a topology change of a $n-$manifold, we are forced to introduce a scalar field with quadratic potential or double well potential. Unfortunately these cases are ruled out by the CMB results of the Planck misssion. In case of 3-manifolds there is another possibility which uses deep results in differential topology of 4-manifolds. With the help of these results we will show that in case of a fixed homology of the 3-manifolds one will obtain a scalar field potential which is conformally equivalent to the Starobinsky model. The free parameter of the Starobinsky model can be expressed by the topological invariants of the 3-manifold. Furthermore we are able to express the number of e-folds as well as the energy and length scale by the Chern-Simons invariant of the final 3-manifold. We will apply these result to a specific model which was used by us to discuss the appearance of the cosmological constant with an experimentally confirmed value.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.