Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Connectedness of attractors of a certain family of IFSs (1812.06427v2)

Published 16 Dec 2018 in math.DS

Abstract: Let $X$ be a Banach space and $f,g:X\rightarrow X$ be contractions. We investigate the set $$ C_{f,g}:={w\in X:\m{ the attractor of IFS }\F_w={f,g+w}\m{ is connected}}. $$ The motivation for our research comes from papers of Mihail and Miculescu, where it was shown that $C_{f,g}$ is a countable union of compact sets, provided $f,g$ are linear bounded operators with $\pa f\pa,\pa g\pa<1$ and such that $f$ is compact. Moreover, in the case when $X$ is finitely dimensional, such sets have been intensively investigated in the last years, especially when $f$ and $g$ are affine maps. As we will be mostly interested in infinite dimensional spaces, our results can be also viewed as a next step into extending of such studies into infinite dimensional setting. In particular, unlike in the finitely dimensional case, if $X$ has infinite dimension then $C_{f,g}$ is very small set (at least nowhere dense) provided $f,g$ satisfy some natural conditions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.