Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Range decreasing group homomorphisms and holomorphic maps between generalized loop spaces (2102.06157v1)

Published 11 Feb 2021 in math.CV, math.FA, and math.RT

Abstract: Let $\mathcal{G}$ resp. $M$ be a positive dimensional Lie group resp. connected complex manifold without boundary and $V$ a finite dimensional $C{\infty}$ compact connected manifold, possibly with boundary. Fix a smoothness class $\mathcal{F}=C{\infty}$, H\"older $C{k, \alpha}$ or Sobolev $W{k, p}$. The space $\mathcal{F}(V, \mathcal{G})$ resp. $\mathcal{F}(V, M)$ of all $\mathcal{F}$ maps $V \to \mathcal{G}$ resp. $V \to M$ is a Banach/Fr\'echet Lie group resp. complex manifold. Let $\mathcal{F}0(V, \mathcal{G})$ resp. $\mathcal{F}{0}(V, M)$ be the component of $\mathcal{F}(V, \mathcal{G})$ resp. $\mathcal{F}(V, M)$ containing the identity resp. constants. A map $f$ from a domain $\Omega \subset \mathcal{F}1(V, M)$ to $\mathcal{F}_2(W, M)$ is called range decreasing if $f(x)(W) \subset x(V)$, $x \in \Omega$. We prove that if $\dim{\mathbb{R}} \mathcal{G} \ge 2$, then any range decreasing group homomorphism $f: \mathcal{F}_10(V, \mathcal{G}) \to \mathcal{F}_2(W, \mathcal{G})$ is the pullback by a map $\phi: W \to V$. We also provide several sufficient conditions for a range decreasing holomorphic map $\Omega$ $\to$ $\mathcal{F}_2(W, M)$ to be a pullback operator. Then we apply these results to study certain decomposition of holomorphic maps $\mathcal{F}_1(V, N) \supset \Omega \to \mathcal{F}_2(W, M)$. In particular, we identify some classes of holomorphic maps $\mathcal{F}_1{0}(V, \mathbb{P}n) \to \mathcal{F}_2(W, \mathbb{P}m)$, including all automorphisms of $\mathcal{F}{0}(V, \mathbb{P}n)$.

Summary

We haven't generated a summary for this paper yet.