Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Large-Scale Study of Call Graph-based Impact Prediction using Mutation Testing (1812.06286v1)

Published 15 Dec 2018 in cs.SE

Abstract: In software engineering, impact analysis involves predicting the software elements (e.g., modules, classes, methods) potentially impacted by a change in the source code. Impact analysis is required to optimize the testing effort. In this paper, we propose an evaluation technique to predict impact propagation. Based on 10 open-source Java projects and 5 classical mutation operators, we create 17,000 mutants and study how the error they introduce propagates. This evaluation technique enables us to analyze impact prediction based on four types of call graph. Our results show that graph sophistication increases the completeness of impact prediction. However, and surprisingly to us, the most basic call graph gives the best trade-off between precision and recall for impact prediction.

Citations (22)

Summary

We haven't generated a summary for this paper yet.