Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Nonabelian Hodge theory and vector valued modular forms (1812.06180v1)

Published 14 Dec 2018 in math.NT, math.AG, and math.DG

Abstract: We examine the relationship between nonabelian Hodge theory for Riemann surfaces and the theory of vector valued modular forms. In particular, we explain how one might use this relationship to prove a conjectural three-term inequality on the weights of free bases of vector valued modular forms associated to complex, finite dimensional, irreducible representations of the modular group. This conjecture is known for irreducible unitary representations and for all irreducible representations of dimension at most 12. We prove new instances of the three-term inequality for certain nonunitary representations, corresponding to a class of maximally-decomposed variations of Hodge structure, by considering the same inequality with respect to a new type of modular form, called a "Higgs form", that arises naturally on the Dolbeault side of nonabelian Hodge theory. The paper concludes with a discussion of a strategy for reducing the general case of nilpotent Higgs bundles to the case under consideration in our main theorem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.