Papers
Topics
Authors
Recent
Search
2000 character limit reached

Building Computational Models to Predict One-Year Mortality in ICU Patients with Acute Myocardial Infarction and Post Myocardial Infarction Syndrome

Published 12 Dec 2018 in cs.LG, q-bio.QM, and stat.ML | (1812.05072v1)

Abstract: Heart disease remains the leading cause of death in the United States. Compared with risk assessment guidelines that require manual calculation of scores, machine learning-based prediction for disease outcomes such as mortality can be utilized to save time and improve prediction accuracy. This study built and evaluated various machine learning models to predict one-year mortality in patients diagnosed with acute myocardial infarction or post myocardial infarction syndrome in the MIMIC-III database. The results of the best performing shallow prediction models were compared to a deep feedforward neural network (Deep FNN) with back propagation. We included a cohort of 5436 admissions. Six datasets were developed and compared. The models applying Logistic Model Trees (LMT) and Simple Logistic algorithms to the combined dataset resulted in the highest prediction accuracy at 85.12% and the highest AUC at .901. In addition, other factors were observed to have an impact on outcomes as well.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.