Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Computing invariant sets of random differential equations using polynomial chaos (1812.05039v1)

Published 12 Dec 2018 in math.DS, math.NA, and math.PR

Abstract: Differential equations with random parameters have gained significant prominence in recent years due to their importance in mathematical modelling and data assimilation. In many cases, random ordinary differential equations (RODEs) are studied by using Monte-Carlo methods or by direct numerical simulation techniques using polynomial chaos (PC), i.e., by a series expansion of the random parameters in combination with forward integration. Here we take a dynamical systems viewpoint and focus on the invariant sets of differential equations such as steady states, stable/unstable manifolds, periodic orbits, and heteroclinic orbits. We employ PC to compute representations of all these different types of invariant sets for RODEs. This allows us to obtain fast sampling, geometric visualization of distributional properties of invariants sets, and uncertainty quantification of dynamical output such as periods or locations of orbits. We apply our techniques to a predator-prey model, where we compute steady states and stable/unstable manifolds. We also include several benchmarks to illustrate the numerical efficiency of adaptively chosen PC depending upon the random input. Then we employ the methods for the Lorenz system, obtaining computational PC representations of periodic orbits, stable/unstable manifolds and heteroclinic orbits.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube