Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature (1812.05022v2)
Abstract: In this paper we consider complete noncompact Riemannian manifolds $(M, g)$ with nonnegative Ricci curvature and Euclidean volume growth, of dimension $n \geq 3$. We prove a sharp WiLLMore-type inequality for closed hypersurfaces $\partial \Omega$ in $M$, with equality holding true if and only if $(M{\setminus}\Omega, g)$ is isometric to a truncated cone over $\partial\Omega$. An optimal version of Huisken's Isoperimetric Inequality for $3$-manifolds is obtained using this result. Finally, exploiting a natural extension of our techniques to the case of parabolic manifolds, we also deduce an enhanced version of Kasue's non existence result for closed minimal hypersurfaces in manifolds with nonnegative Ricci curvature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.