Théorème d'Erdős-Kac pour les translatés d'entiers ayant $k$ facteurs premiers
Abstract: Let $x\geqslant 3$. For $1\leqslant n\leqslant x$ an integer, let $\omega(n)$ be its number of distinct prime factors. We show that $\omega(n-1)$ satisfies an Erd\H{o}s-Kac type theorem whenever $\omega(n)=k$ where $1\leqslant k\ll\log\log x$, thus extending a result of Halberstam.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.