Papers
Topics
Authors
Recent
2000 character limit reached

Channel selection using Gumbel Softmax (1812.04180v4)

Published 11 Dec 2018 in cs.CV

Abstract: Important applications such as mobile computing require reducing the computational costs of neural network inference. Ideally, applications would specify their preferred tradeoff between accuracy and speed, and the network would optimize this end-to-end, using classification error to remove parts of the network. Increasing speed can be done either during training - e.g., pruning filters - or during inference - e.g., conditionally executing a subset of the layers. We propose a single end-to-end framework that can improve inference efficiency in both settings. We use a combination of batch activation loss and classification loss, and Gumbel reparameterization to learn network structure. We train end-to-end, and the same technique supports pruning as well as conditional computation. We obtain promising experimental results for ImageNet classification with ResNet (45-52% less computation).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.