Periods of Complete Intersection Algebraic Cycles (1812.03964v5)
Abstract: For every even number $n$, and every $n$-dimensional smooth hypersurface of $\mathbb{P}{n+1}$ of degree $d$, we compute the periods of all its $\frac{n}{2}$-dimensional complete intersection algebraic cycles. Furthermore, we determine the image of the given algebraic cycle under the cycle class map inside the De Rham cohomology group of the corresponding hypersurface in terms of its Griffiths basis and the polarization. As an application, we use this information to address variational Hodge conjecture for a non complete intersection algebraic cycle. We prove that the locus of general hypersurfaces containing two linear cycles whose intersection is of dimension less than $\frac{n}{2}-\frac{d}{d-2}$, corresponds to the Hodge locus of any integral combination of such linear cycles.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.