Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Non-Uniform Hypergraph for Multi-Object Tracking (1812.03621v1)

Published 10 Dec 2018 in cs.CV

Abstract: The majority of Multi-Object Tracking (MOT) algorithms based on the tracking-by-detection scheme do not use higher order dependencies among objects or tracklets, which makes them less effective in handling complex scenarios. In this work, we present a new near-online MOT algorithm based on non-uniform hypergraph, which can model different degrees of dependencies among tracklets in a unified objective. The nodes in the hypergraph correspond to the tracklets and the hyperedges with different degrees encode various kinds of dependencies among them. Specifically, instead of setting the weights of hyperedges with different degrees empirically, they are learned automatically using the structural support vector machine algorithm (SSVM). Several experiments are carried out on various challenging datasets (i.e., PETS09, ParkingLot sequence, SubwayFace, and MOT16 benchmark), to demonstrate that our method achieves favorable performance against the state-of-the-art MOT methods.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.