Kinetic theory of spin diffusion and superdiffusion in XXZ spin chains (1812.02701v2)
Abstract: We address the nature of spin transport in the integrable XXZ spin chain, focusing on the isotropic Heisenberg limit. We calculate the diffusion constant using a kinetic picture based on generalized hydrodynamics combined with Gaussian fluctuations: we find that it diverges, and show that a self-consistent treatment of this divergence gives superdiffusion, with an effective time-dependent diffusion constant that scales as $D(t) \sim t{1/3}$. This exponent had previously been observed in large-scale numerical simulations, but had not been theoretically explained. We briefly discuss XXZ models with easy-axis anisotropy $\Delta > 1$. Our method gives closed-form expressions for the diffusion constant $D$ in the infinite-temperature limit for all $\Delta > 1$. We find that $D$ saturates at large anisotropy, and diverges as the Heisenberg limit is approached, as $D \sim (\Delta - 1){-1/2}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.