Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

A two-stage hybrid model by using artificial neural networks as feature construction algorithms (1812.02546v1)

Published 6 Dec 2018 in stat.ML and cs.LG

Abstract: We propose a two-stage hybrid approach with neural networks as the new feature construction algorithms for bankcard response classifications. The hybrid model uses a very simple neural network structure as the new feature construction tool in the first stage, then the newly created features are used as the additional input variables in logistic regression in the second stage. The model is compared with the traditional one-stage model in credit customer response classification. It is observed that the proposed two-stage model outperforms the one-stage model in terms of accuracy, the area under ROC curve, and KS statistic. By creating new features with the neural network technique, the underlying nonlinear relationships between variables are identified. Furthermore, by using a very simple neural network structure, the model could overcome the drawbacks of neural networks in terms of its long training time, complex topology, and limited interpretability.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube