Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On High Dimensional Covariate Adjustment for Estimating Causal Effects in Randomized Trials with Survival Outcomes (1812.02130v3)

Published 5 Dec 2018 in stat.ME

Abstract: The purpose of this work is to improve the efficiency in estimating the average causal effect (ACE) on the survival scale where right-censoring exists and high-dimensional covariate information is available. We propose new estimators using regularized survival regression and survival random forests (SRF) to make the adjustment for the high dimensional covariates to improve efficiency. We study the behavior of the adjusted estimator under mild assumptions and show theoretical guarantees that the proposed estimators are more efficient than the unadjusted ones asymptotically when using SRF for adjustment. In addition, these adjusted estimators are $\sqrt{n}$- consistent and asymptotically normally distributed. The finite sample behavior of our methods are studied by simulation, and the results are in agreement with the theoretical results. We also illustrate our methods by analyzing the real data from transplant research to identify the relative effectiveness of identical sibling donors compared to unrelated donors with the adjustment of cytogenetic abnormalities.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.