Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On Fröberg-Macaulay conjectures for algebras (1812.01100v1)

Published 3 Dec 2018 in math.AC

Abstract: Macaulay's theorem and Fr\"oberg's conjecture deal with the Hilbert function of homogeneous ideals in polynomial rings $S$ over a field $K$. In this short note we present some questions related to variants of Macaulay's theorem and Fr\"oberg's conjecture for $K$-subalgebras of polynomial rings. In details, given a subspace $V$ of forms of degree $d$ we consider the $K$-subalgebra $K[V]$ of $S$ generated by $V$. What can be said about Hilbert function of $K[V]$? The analogy with the ideal case suggests several questions. To state them we start by recalling Macaulay's theorem, Fr\"oberg's conjecture and Gotzmann's persistence theorem for ideals. Then we presents the variants for $K$-subalgebras along with some partial results and examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.