Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing Neural- and N-Gram-Based Language Models for Word Segmentation (1812.00815v1)

Published 3 Dec 2018 in cs.CL

Abstract: Word segmentation is the task of inserting or deleting word boundary characters in order to separate character sequences that correspond to words in some language. In this article we propose an approach based on a beam search algorithm and a LLM working at the byte/character level, the latter component implemented either as an n-gram model or a recurrent neural network. The resulting system analyzes the text input with no word boundaries one token at a time, which can be a character or a byte, and uses the information gathered by the LLM to determine if a boundary must be placed in the current position or not. Our aim is to use this system in a preprocessing step for a microtext normalization system. This means that it needs to effectively cope with the data sparsity present on this kind of texts. We also strove to surpass the performance of two readily available word segmentation systems: The well-known and accessible Word Breaker by Microsoft, and the Python module WordSegment by Grant Jenks. The results show that we have met our objectives, and we hope to continue to improve both the precision and the efficiency of our system in the future.

Citations (30)

Summary

We haven't generated a summary for this paper yet.