Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Named Entity Recognition for Chinese Social Media with Word Segmentation Representation Learning (1603.00786v2)

Published 2 Mar 2016 in cs.CL

Abstract: Named entity recognition, and other information extraction tasks, frequently use linguistic features such as part of speech tags or chunkings. For languages where word boundaries are not readily identified in text, word segmentation is a key first step to generating features for an NER system. While using word boundary tags as features are helpful, the signals that aid in identifying these boundaries may provide richer information for an NER system. New state-of-the-art word segmentation systems use neural models to learn representations for predicting word boundaries. We show that these same representations, jointly trained with an NER system, yield significant improvements in NER for Chinese social media. In our experiments, jointly training NER and word segmentation with an LSTM-CRF model yields nearly 5% absolute improvement over previously published results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nanyun Peng (205 papers)
  2. Mark Dredze (66 papers)
Citations (18)