Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exploiting Wireless Channel State Information Structures Beyond Linear Correlations: A Deep Learning Approach

Published 3 Dec 2018 in cs.IT, cs.LG, and math.IT | (1812.00541v1)

Abstract: Knowledge of information about the propagation channel in which a wireless system operates enables better, more efficient approaches for signal transmissions. Therefore, channel state information (CSI) plays a pivotal role in the system performance. The importance of CSI is in fact growing in the upcoming 5G and beyond systems, e.g., for the implementation of massive multiple-input multiple-output (MIMO). However, the acquisition of timely and accurate CSI has long been considered as a major issue, and becomes increasingly challenging due to the need for obtaining CSI of many antenna elements in massive MIMO systems. To cope with this challenge, existing works mainly focus on exploiting linear structures of CSI, such as CSI correlations in the spatial domain, to achieve dimensionality reduction. In this article, we first systematically review the state-of-the-art on CSI structure exploitation; then extend to seek for deeper structures that enable remote CSI inference wherein a data-driven deep neural network (DNN) approach is necessary due to model inadequacy. We develop specific DNN designs suitable for CSI data. Case studies are provided to demonstrate great potential in this direction for future performance enhancement.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.