Papers
Topics
Authors
Recent
2000 character limit reached

An efficient reduction strategy for signature-based algorithms to compute Groebner basis

Published 30 Nov 2018 in cs.SC and math.AC | (1811.12663v1)

Abstract: This paper introduces a strategy for signature-based algorithms to compute Groebner basis. The signature-based algorithms generate S-pairs instead of S-polynomials, and use s-reduction instead of the usual reduction used in the Buchberger algorithm. There are two strategies for s-reduction: one is the only-top reduction strategy which is the way that only leading monomials are s-reduced. The other is the full reduction strategy which is the way that all monomials are s-reduced. A new strategy, which we call selective-full strategy, for s-reduction of S-pairs is introduced in this paper. In the experiment, this strategy is efficient for computing the reduced Groebner basis. For computing a signature Groebner basis, it is the most efficient or not the worst of the three strategies.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.