Central limit theorems with a rate of convergence for time-dependent intermittent maps (1811.11170v5)
Abstract: We study dynamical systems arising as time-dependent compositions of Pomeau-Manneville-type intermittent maps. We establish central limit theorems for appropriately scaled and centered Birkhoff-like partial sums, with estimates on the rate of convergence. For maps chosen from a certain parameter range, but without additional assumptions on how the maps vary with time, we obtain a self-normalized CLT provided that the variances of the partial sums grow sufficiently fast. When the maps are chosen randomly according to a shift-invariant probability measure, we identify conditions under which the quenched CLT holds, assuming fiberwise centering. Finally, we show a multivariate CLT for intermittent quasistatic systems. Our approach is based on Stein's method of normal approximation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.