Papers
Topics
Authors
Recent
Search
2000 character limit reached

Functional correlation decay and multivariate normal approximation for non-uniformly expanding maps

Published 2 Feb 2017 in math.DS and math.PR | (1702.00699v3)

Abstract: In the setting of intermittent Pomeau-Manneville maps with time dependent parameters, we show a functional correlation bound widely useful for the analysis of the statistical properties of the model. We give two applications of this result, by showing that in a suitable range of parameters the bound implies the conditions of the normal approximation methods of Stein and Rio. For a single Pomeau-Manneville map belonging to this parameter range, both methods then yield a multivariate central limit theorem with a rate of convergence.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.