Generating Responses Expressing Emotion in an Open-domain Dialogue System (1811.10990v1)
Abstract: Neural network-based Open-ended conversational agents automatically generate responses based on predictive models learned from a large number of pairs of utterances. The generated responses are typically acceptable as a sentence but are often dull, generic, and certainly devoid of any emotion. In this paper, we present neural models that learn to express a given emotion in the generated response. We propose four models and evaluate them against 3 baselines. An encoder-decoder framework-based model with multiple attention layers provides the best overall performance in terms of expressing the required emotion. While it does not outperform other models on all emotions, it presents promising results in most cases.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.