Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IGNOR: Image-guided Neural Object Rendering (1811.10720v2)

Published 26 Nov 2018 in cs.CV

Abstract: We propose a learned image-guided rendering technique that combines the benefits of image-based rendering and GAN-based image synthesis. The goal of our method is to generate photo-realistic re-renderings of reconstructed objects for virtual and augmented reality applications (e.g., virtual showrooms, virtual tours & sightseeing, the digital inspection of historical artifacts). A core component of our work is the handling of view-dependent effects. Specifically, we directly train an object-specific deep neural network to synthesize the view-dependent appearance of an object. As input data we are using an RGB video of the object. This video is used to reconstruct a proxy geometry of the object via multi-view stereo. Based on this 3D proxy, the appearance of a captured view can be warped into a new target view as in classical image-based rendering. This warping assumes diffuse surfaces, in case of view-dependent effects, such as specular highlights, it leads to artifacts. To this end, we propose EffectsNet, a deep neural network that predicts view-dependent effects. Based on these estimations, we are able to convert observed images to diffuse images. These diffuse images can be projected into other views. In the target view, our pipeline reinserts the new view-dependent effects. To composite multiple reprojected images to a final output, we learn a composition network that outputs photo-realistic results. Using this image-guided approach, the network does not have to allocate capacity on ``remembering'' object appearance, instead it learns how to combine the appearance of captured images. We demonstrate the effectiveness of our approach both qualitatively and quantitatively on synthetic as well as on real data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Justus Thies (62 papers)
  2. Michael Zollhöfer (51 papers)
  3. Christian Theobalt (251 papers)
  4. Marc Stamminger (31 papers)
  5. Matthias Nießner (177 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.