Parallel approach to sliding window sums (1811.10074v2)
Abstract: Sliding window sums are widely used in bioinformatics applications, including sequence assembly, k-mer generation, hashing and compression. New vector algorithms which utilize the advanced vector extension (AVX) instructions available on modern processors, or the parallel compute units on GPUs and FPGAs, would provide a significant performance boost for the bioinformatics applications. We develop a generic vectorized sliding sum algorithm with speedup for window size w and number of processors P is O(P/w) for a generic sliding sum. For a sum with commutative operator the speedup is improved to O(P/log(w)). When applied to the genomic application of minimizer based k-mer table generation using AVX instructions, we obtain a speedup of over 5X.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.