Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Individualized Time-Series Segmentation for Mining Mobile Phone User Behavior (1811.09577v1)

Published 15 Nov 2018 in cs.CY, cs.LG, and stat.ML

Abstract: Mobile phones can record individual's daily behavioral data as a time-series. In this paper, we present an effective time-series segmentation technique that extracts optimal time segments of individual's similar behavioral characteristics utilizing their mobile phone data. One of the determinants of an individual's behavior is the various activities undertaken at various times-of-the-day and days-of-the-week. In many cases, such behavior will follow temporal patterns. Currently, researchers use either equal or unequal interval-based segmentation of time for mining mobile phone users' behavior. Most of them take into account static temporal coverage of 24-h-a-day and few of them take into account the number of incidences in time-series data. However, such segmentations do not necessarily map to the patterns of individual user activity and subsequent behavior because of not taking into account the diverse behaviors of individuals over time-of-the-week. Therefore, we propose a behavior-oriented time segmentation (BOTS) technique that takes into account not only the temporal coverage of the week but also the number of incidences of diverse behaviors dynamically for producing similar behavioral time segments over the week utilizing time-series data. Experiments on the real mobile phone datasets show that our proposed segmentation technique better captures the user's dominant behavior at various times-of-the-day and days-of-the-week enabling the generation of high confidence temporal rules in order to mine individual mobile phone users' behavior.

Citations (71)

Summary

We haven't generated a summary for this paper yet.