SpherePHD: Applying CNNs on a Spherical PolyHeDron Representation of 360 degree Images
Abstract: Omni-directional cameras have many advantages overconventional cameras in that they have a much wider field-of-view (FOV). Accordingly, several approaches have beenproposed recently to apply convolutional neural networks(CNNs) to omni-directional images for various visual tasks.However, most of them use image representations defined inthe Euclidean space after transforming the omni-directionalviews originally formed in the non-Euclidean space. Thistransformation leads to shape distortion due to nonuniformspatial resolving power and the loss of continuity. Theseeffects make existing convolution kernels experience diffi-culties in extracting meaningful information.This paper presents a novel method to resolve such prob-lems of applying CNNs to omni-directional images. Theproposed method utilizes a spherical polyhedron to rep-resent omni-directional views. This method minimizes thevariance of the spatial resolving power on the sphere sur-face, and includes new convolution and pooling methodsfor the proposed representation. The proposed method canalso be adopted by any existing CNN-based methods. Thefeasibility of the proposed method is demonstrated throughclassification, detection, and semantic segmentation taskswith synthetic and real datasets.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.