Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Regularizing a linearized EIT reconstruction method using a sensitivity based factorization method (1811.07616v1)

Published 19 Nov 2018 in math.NA and math.AP

Abstract: For electrical impedance tomography (EIT), most practical reconstruction methods are based on linearizing the underlying non-linear inverse problem. Recently, it has been shown that the linearized problem still contains the exact shape information. However, the stable reconstruction of shape information from measurements of finite accuracy on a limited number of electrodes remains a challenge. In this work we propose to regularize the standard linearized reconstruction method (LM) for EIT using a non-iterative shape reconstruction method (the factorization method). Our main tool is a discrete sensitivity-based variant of the factorization method (herein called S-FM) which allows us to formulate and combine both methods in terms of the sensitivity matrix. We give a heuristic motivation for this new method and show numerical examples that indicate its good performance in the localization of anomalies and the alleviation of ringing artifacts.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.