Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Gaussian Process Accelerated Feldman-Cousins Approach for Physical Parameter Inference (1811.07050v3)

Published 16 Nov 2018 in physics.data-an and stat.ML

Abstract: The unified approach of Feldman and Cousins allows for exact statistical inference of small signals that commonly arise in high energy physics. It has gained widespread use, for instance, in measurements of neutrino oscillation parameters in long-baseline experiments. However, the approach relies on the Neyman construction of the classical confidence interval and is computationally intensive as it is typically done in a grid-based fashion over the entire parameter space. In this letter, we propose an efficient algorithm for the Feldman-Cousins approach using Gaussian processes to construct confidence intervals iteratively. We show that in the neutrino oscillation context, one can obtain confidence intervals 5 times faster in one dimension and 10 times faster in two dimensions, while maintaining an accuracy above 99.5%.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.