Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SVM-Based Sea-Surface Small Target Detection: A False-Alarm-Rate-Controllable Approach (1811.05251v1)

Published 13 Nov 2018 in cs.IT and math.IT

Abstract: In this letter, we consider the varying detection environments to address the problem of detecting small targets within sea clutter. We first extract three simple yet practically discriminative features from the returned signals in the time and frequency domains and then fuse them into a 3-D feature space. Based on the constructed space, we then adopt and elegantly modify the support vector machine (SVM) to design a learning-based detector that enfolds the false alarm rate (FAR). Most importantly, our proposed detector can flexibly control the FAR by simply adjusting two introduced parameters, which facilitates to regulate detector's sensitivity to the outliers incurred by the sea spikes and to fairly evaluate the performance of different detection algorithms. Experimental results demonstrate that our proposed detector significantly improves the detection probability over several existing classical detectors in both low signal to clutter ratio (SCR) (up to 58%) and low FAR (up to 40%) cases.

Citations (69)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.