Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Subspace Alignment Improves Domain Adaptation (1811.04491v1)

Published 11 Nov 2018 in cs.CV

Abstract: We present a novel unsupervised domain adaptation (DA) method for cross-domain visual recognition. Though subspace methods have found success in DA, their performance is often limited due to the assumption of approximating an entire dataset using a single low-dimensional subspace. Instead, we develop a method to effectively represent the source and target datasets via a collection of low-dimensional subspaces, and subsequently align them by exploiting the natural geometry of the space of subspaces, on the Grassmann manifold. We demonstrate the effectiveness of this approach, using empirical studies on two widely used benchmarks, with state of the art domain adaptation performance

Citations (9)

Summary

We haven't generated a summary for this paper yet.