Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the geometry, flows and visualization of singular complex analytic vector fields on Riemann surfaces (1811.04157v2)

Published 9 Nov 2018 in math.DS

Abstract: Motivated by the wild behavior of isolated essential singularities in complex analysis, we study singular complex analytic vector fields $X$ on arbitrary Riemann surfaces $M$. By vector field singularities we understand zeros, poles, isolated essential singularities and accumulation points of the above kind. In this framework, a singular analytic vector field $X$ has canonically associated; a 1-form, a quadratic differential, a flat metric (with a geodesic foliation), a global distinguished parameter or $\mathbb{C}$-flow box $\Psi_X$, a Newton map $\Phi_X$, and a Riemann surface $\mathcal{R}X$ arising from the maximal $\mathbb{C}$-flow of $X$. We show that every singular complex analytic vector field $X$ on a Riemann surface is in fact both a global pullback of the constant vector field under $\Psi_X$ and of the radial vector field on the sphere under $\Phi_X$. As a result of independent interest, we show that the maximal analytic continuation of the a local $\mathbb{C}$-flow of $X$ is univalued on the Riemann surface $\mathcal{R}{X} \subset M \times \mathbb{C}t$, where $\mathcal{R}_X$ is the graph of $\Psi{X}$. Furthermore we explore the geometry of singular complex analytic vector fields and present a geometrical method that enables us to obtain the solution, without numerical integration, to the differential equation that provides the $\mathbb{C}$-flow of the vector field. We discuss the theory behind the method, its implementation, comparison with some integration-based techniques, as well as examples of the visualization of complex vector fields on the plane, sphere and torus. Applications to visualization of complex valued functions is discussed including some advantages between other methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube