Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Multi-Label Classification based on ML-Plan (1811.04060v1)

Published 9 Nov 2018 in cs.LG and stat.ML

Abstract: Automated machine learning (AutoML) has received increasing attention in the recent past. While the main tools for AutoML, such as Auto-WEKA, TPOT, and auto-sklearn, mainly deal with single-label classification and regression, there is very little work on other types of machine learning tasks. In particular, there is almost no work on automating the engineering of machine learning applications for multi-label classification. This paper makes two contributions. First, it discusses the usefulness and feasibility of an AutoML approach for multi-label classification. Second, we show how the scope of ML-Plan, an AutoML-tool for multi-class classification, can be extended towards multi-label classification using MEKA, which is a multi-label extension of the well-known Java library WEKA. The resulting approach recursively refines MEKA's multi-label classifiers, which sometimes nest another multi-label classifier, up to the selection of a single-label base learner provided by WEKA. In our evaluation, we find that the proposed approach yields superb results and performs significantly better than a set of baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Marcel Wever (23 papers)
  2. Felix Mohr (18 papers)
  3. Eyke Hüllermeier (129 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.