Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Graded Betti numbers of balanced simplicial complexes (1811.03892v1)

Published 9 Nov 2018 in math.CO and math.AC

Abstract: We prove upper bounds for the graded Betti numbers of Stanley-Reisner rings of balanced simplicial complexes. Along the way we show bounds for Cohen-Macaulay graded rings $S/I$, where $S$ is a polynomial ring and $I\subseteq S$ is an homogeneous ideal containing a certain number of generators in degree 2, including the squares of the variables. Using similar techniques we provide upper bounds for the number of linear syzygies for Stanley-Reisner of balanced normal pseudomanifolds. Moreover, we compute explicitly the graded Betti numbers of cross-polytopal stacked spheres, and show that they only depend on the dimension and the number of vertices, rather than also the combinatorial type.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.