A note on the prediction error of principal component regression (1811.02998v2)
Abstract: We analyse the prediction error of principal component regression (PCR) and prove non-asymptotic upper bounds for the corresponding squared risk. Under mild assumptions, we show that PCR performs as well as the oracle method obtained by replacing empirical principal components by their population counterparts. Our approach relies on upper bounds for the excess risk of principal component analysis.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.