Papers
Topics
Authors
Recent
Search
2000 character limit reached

$k$-Schur expansions of Catalan functions

Published 6 Nov 2018 in math.CO, math.AG, and math.QA | (1811.02490v1)

Abstract: We make a broad conjecture about the $k$-Schur positivity of Catalan functions, symmetric functions which generalize the (parabolic) Hall-Littlewood polynomials. We resolve the conjecture with positive combinatorial formulas in cases which address the $k$-Schur expansion of (1) Hall-Littlewood polynomials, proving the $q=0$ case of the strengthened Macdonald positivity conjecture of Lapointe, Lascoux, and Morse; (2) the product of a Schur function and a $k$-Schur function when the indexing partitions concatenate to a partition, describing a class of Gromov-Witten invariants for the quantum cohomology of complete flag varieties; (3) $k$-split polynomials, proving a substantial case of a problem of Broer and Shimozono-Weyman on parabolic Hall-Littlewood polynomials. In addition, we prove the conjecture that $k$-Schur functions defined in terms of $k$-split polynomials agree with strong tableau $k$-Schur functions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.