Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Face Landmark-based Speaker-Independent Audio-Visual Speech Enhancement in Multi-Talker Environments (1811.02480v3)

Published 6 Nov 2018 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: In this paper, we address the problem of enhancing the speech of a speaker of interest in a cocktail party scenario when visual information of the speaker of interest is available. Contrary to most previous studies, we do not learn visual features on the typically small audio-visual datasets, but use an already available face landmark detector (trained on a separate image dataset). The landmarks are used by LSTM-based models to generate time-frequency masks which are applied to the acoustic mixed-speech spectrogram. Results show that: (i) landmark motion features are very effective features for this task, (ii) similarly to previous work, reconstruction of the target speaker's spectrogram mediated by masking is significantly more accurate than direct spectrogram reconstruction, and (iii) the best masks depend on both motion landmark features and the input mixed-speech spectrogram. To the best of our knowledge, our proposed models are the first models trained and evaluated on the limited size GRID and TCD-TIMIT datasets, that achieve speaker-independent speech enhancement in a multi-talker setting.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Giovanni Morrone (10 papers)
  2. Luca Pasa (6 papers)
  3. Vadim Tikhanoff (8 papers)
  4. Sonia Bergamaschi (6 papers)
  5. Luciano Fadiga (4 papers)
  6. Leonardo Badino (9 papers)
Citations (57)