Papers
Topics
Authors
Recent
2000 character limit reached

The groupoid approach to Leavitt path algebras

Published 6 Nov 2018 in math.RA and math.OA | (1811.02269v2)

Abstract: When the theory of Leavitt path algebras was already quite advanced, it was discovered that some of the more difficult questions were susceptible to a new approach using topological groupoids. The main result that makes this possible is that the Leavitt path algebra of a graph is graded isomorphic to the Steinberg algebra of the graph's boundary path groupoid. This expository paper has three parts: Part 1 is on the Steinberg algebra of a groupoid, Part 2 is on the path space and boundary path groupoid of a graph, and Part 3 is on the Leavitt path algebra of a graph. It is a self-contained reference on these topics, intended to be useful to beginners and experts alike. While revisiting the fundamentals, we prove some results in greater generality than can be found elsewhere, including the uniqueness theorems for Leavitt path algebras.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.