Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

Solution Refinement at Regular Points of Conic Problems (1811.02157v1)

Published 6 Nov 2018 in math.OC

Abstract: Most numerical methods for conic problems use the homogenous primal-dual embedding, which yields a primal-dual solution or a certificate establishing primal or dual infeasibility. Following Patrinos (and others, 2018), we express the embedding as the problem of finding a zero of a mapping containing a skew-symmetric linear function and projections onto cones and their duals. We focus on the special case when this mapping is regular, i.e., differentiable with nonsingular derivative matrix, at a solution point. While this is not always the case, it is a very common occurrence in practice. We propose a simple method that uses LSQR, a variant of conjugate gradients for least squares problems, and the derivative of the residual mapping to refine an approximate solution, i.e., to increase its accuracy. LSQR is a matrix-free method, i.e., requires only the evaluation of the derivative mapping and its adjoint, and so avoids forming or storing large matrices, which makes it efficient even for cone problems in which the data matrices are given and dense, and also allows the method to extend to cone programs in which the data are given as abstract linear operators. Numerical examples show that the method almost always improves an approximate solution of a conic program, and often dramatically, at a computational cost that is typically small compared to the cost of obtaining the original approximate solution. For completeness we describe methods for computing the derivative of the projection onto the cones commonly used in practice: nonnegative, second-order, semidefinite, and exponential cones. The paper is accompanied by an open source implementation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.