Papers
Topics
Authors
Recent
Search
2000 character limit reached

Construction and classification of symmetry protected topological phases in interacting fermion systems

Published 1 Nov 2018 in cond-mat.str-el, hep-th, math-ph, and math.MP | (1811.00536v3)

Abstract: The classification and lattice model construction of symmetry protected topological (SPT) phases in interacting fermion systems are very interesting but challenging. In this paper, we give a systematic fixed point wave function construction of fermionic SPT (FSPT) states for generic fermionic symmetry group $G_f=\mathbb{Z}2f \times{\omega_2} G_b$ which is a central extension of bosonic symmetry group $G_b$ (may contain time reversal symmetry) by the fermion parity symmetry group $\mathbb{Z}_2f = {1,P_f}$. Our construction is based on the concept of equivalence class of finite depth fermionic symmetric local unitary (FSLU) transformations and decorating symmetry domain wall picture, subjected to certain obstructions. We will also discuss the systematical construction and classification of boundary anomalous SPT (ASPT) states which leads to a trivialization of the corresponding bulk FSPT states. Thus, we conjecture that the obstruction-free and trivialization-free constructions naturally lead to a classification of FSPT phases. Each fixed-point wave function admits an exactly solvable commuting-projector Hamiltonian. We believe that our classification scheme can be generalized to point/space group symmetry as well as continuum Lie group symmetry.

Citations (66)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.