Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions (1811.00414v3)

Published 31 Oct 2018 in cs.DS, cs.IR, cs.LG, and quant-ph

Abstract: A central roadblock to analyzing quantum algorithms on quantum states is the lack of a comparable input model for classical algorithms. Inspired by recent work of the author [E. Tang, STOC'19], we introduce such a model, where we assume we can efficiently perform $\ell2$-norm samples of input data, a natural analogue to quantum algorithms that assume efficient state preparation of classical data. Though this model produces less practical algorithms than the (stronger) standard model of classical computation, it captures versions of many of the features and nuances of quantum linear algebra algorithms. With this model, we describe classical analogues to Lloyd, Mohseni, and Rebentrost's quantum algorithms for principal component analysis [Nat. Phys. 10, 631 (2014)] and nearest-centroid clustering [arXiv:1307.0411]. Since they are only polynomially slower, these algorithms suggest that the exponential speedups of their quantum counterparts are simply an artifact of state preparation assumptions.

Citations (94)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube