Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A stochastic algorithm for deterministic multistage optimization problems (1810.12870v4)

Published 30 Oct 2018 in math.OC

Abstract: Several attempts to dampen the curse of dimensionnality problem of the Dynamic Programming approach for solving multistage optimization problems have been investigated. One popular way to address this issue is the Stochastic Dual Dynamic Programming method (SDDP) introduced by Perreira and Pinto in 1991 for Markov Decision Processes. Assuming that the value function is convex (for a minimization problem), one builds a non-decreasing sequence of lower (or outer) convex approximations of the value function. Those convex approximations are constructed as a supremum of affine cuts. On continuous time deterministic optimal control problems, assuming that the value function is semiconvex, Zheng Qu, inspired by the work of McEneaney, introduced in 2013 a stochastic max-plus scheme that builds upper (or inner) non-increasing approximations of the value function. In this note, we build a common framework for both the SDDP and a discrete time version of Zheng Qu's algorithm to solve deterministic multistage optimization problems. Our algorithm generates monotone approximations of the value functions as a pointwise supremum, or infimum, of basic (affine or quadratic for example) functions which are randomly selected. We give sufficient conditions on the way basic functions are selected in order to ensure almost sure convergence of the approximations to the value function on a set of interest.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.