Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Attention Mechanisms in Neural Machine Translation (1810.12427v1)

Published 29 Oct 2018 in cs.CL and cs.AI

Abstract: Recent papers in neural machine translation have proposed the strict use of attention mechanisms over previous standards such as recurrent and convolutional neural networks (RNNs and CNNs). We propose that by running traditionally stacked encoding branches from encoder-decoder attention- focused architectures in parallel, that even more sequential operations can be removed from the model and thereby decrease training time. In particular, we modify the recently published attention-based architecture called Transformer by Google, by replacing sequential attention modules with parallel ones, reducing the amount of training time and substantially improving BLEU scores at the same time. Experiments over the English to German and English to French translation tasks show that our model establishes a new state of the art.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Julian Richard Medina (1 paper)
  2. Jugal Kalita (64 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.