Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phrase-Based Attentions (1810.03444v1)

Published 30 Sep 2018 in cs.CL

Abstract: Most state-of-the-art neural machine translation systems, despite being different in architectural skeletons (e.g. recurrence, convolutional), share an indispensable feature: the Attention. However, most existing attention methods are token-based and ignore the importance of phrasal alignments, the key ingredient for the success of phrase-based statistical machine translation. In this paper, we propose novel phrase-based attention methods to model n-grams of tokens as attention entities. We incorporate our phrase-based attentions into the recently proposed Transformer network, and demonstrate that our approach yields improvements of 1.3 BLEU for English-to-German and 0.5 BLEU for German-to-English translation tasks on WMT newstest2014 using WMT'16 training data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Phi Xuan Nguyen (1 paper)
  2. Shafiq Joty (187 papers)
Citations (8)