On a weighted Trudinger-Moser inequality in $\mathbb{R}^N$ (1810.12329v1)
Abstract: We establish the Trudinger-Moser inequality on weighted Sobolev spaces in the whole space, and for a class of quasilinear elliptic operators in radial form of the type $\displaystyle Lu:=-r{-\theta}(r{\alpha}\vert u'(r)\vert{\beta}u'(r))'$, where $\theta, \beta\geq 0$ and $\alpha>0$, are constants satisfying some existence conditions. It worth emphasizing that these operators generalize the $p$- Laplacian and $k$-Hessian operators in the radial case. Our results involve fractional dimensions, a new weighted P\'olya-Szeg{\"o} principle, and a boundness value for the optimal constant in a Gagliardo-Nirenberg type inequality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.