Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fine-grained Video Categorization with Redundancy Reduction Attention (1810.11189v1)

Published 26 Oct 2018 in cs.CV

Abstract: For fine-grained categorization tasks, videos could serve as a better source than static images as videos have a higher chance of containing discriminative patterns. Nevertheless, a video sequence could also contain a lot of redundant and irrelevant frames. How to locate critical information of interest is a challenging task. In this paper, we propose a new network structure, known as Redundancy Reduction Attention (RRA), which learns to focus on multiple discriminative patterns by sup- pressing redundant feature channels. Specifically, it firstly summarizes the video by weight-summing all feature vectors in the feature maps of selected frames with a spatio-temporal soft attention, and then predicts which channels to suppress or to enhance according to this summary with a learned non-linear transform. Suppression is achieved by modulating the feature maps and threshing out weak activations. The updated feature maps are then used in the next iteration. Finally, the video is classified based on multiple summaries. The proposed method achieves out- standing performances in multiple video classification datasets. Further- more, we have collected two large-scale video datasets, YouTube-Birds and YouTube-Cars, for future researches on fine-grained video categorization. The datasets are available at http://www.cs.umd.edu/~chenzhu/fgvc.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.